The Evolving Pathogenesis of Alopecia Areata and Biomarkers of Disease

Ralf Paus
University of Miami Miller School of Medicine, Miami, FL
&
University of Manchester, Manchester, UK

Conflicts of interest: „Plenty“
Consultant for competing companies interested in hair loss
Founder & CEO, Monasterium Laboratory, Münster, Germany
Relevant: None
Alopecia areata (AA) = autoimmune hair loss disorder → always?

Gilhar/Paus *N Engl J Med* 2012

Pathognomonic skin & hair phenotype
- focal/total alopecia in “normal” skin
- “exclamation mark hair”, “cadaver hairs”
- regrowth of white hair (poliosis)

→ indicates immune privilege collapse

→ Regrowth of white hair = diagnostic!
Immunocompetent HF epithelium

Immunoprivileged HF epithelium

Invisible "Immunological watershed"

Human HF immunology
Follicular repigmentation in vitiligo

Paus Nat Med 2013
Strong immune privilege: BULB pigmentary unit well-shielded from immune attack.

Vitiligo:
Epidermal repigmentation from HF reservoir.

Conrad et al. BJD 2000

Ito et al. Am J Pathol 2004
Human HF melanocytes „live a life of (immune) privilege“

→ Key reason why
HF melanocytes & their progenitors are least likely to get attacked

Seat of HF melanocyte stem cells
Harries et al. *J Pathol* 2013

Strong Immune privilege: BULB
Christoph et al. *BJD* 2000

Vitiligo: Epidermal repigmentation from HF reservoir

→ HF pigmentary unit well-shielded from immune attack
Immunocompetent HF epithelium

Immunoprivileged HF epithelium

HF immune privilege (IP)

- MHC class I, β2 mg, TAPs
- LCs: MHC class II+
- CD4+ or CD8+ TCs

"Immunological watershed"

- No MHC class I, β2 mg, TAPs
- LCs: MHC class II-negative
- Very few (functionally inhibited?) CD4+ or CD8+ TCs and NK cells
- Almost no γδ TCs
- Strong CD200 (bulge)
- IDO (bulge)
- α-MSH, MC-1R
- TGFβ1/2 & TGFβRI/II
- VIP-R
- IGF-1
- Cortisol
- Perifollicular Tregs
- Immunoinhibitory mast cells

→ Creation of immunoinhibitory, tolerance-promoting milieu
Indicators if HF IP collapse

- **Immunocompetent**
 - HF epithelium
- **Immunoprivileged**
 - HF epithelium

Indicators

- High MHC class I+II, β2 mg
- Numerous CD4+ or CD8+ TCs, NK cells & γδTCs
- Low CD200 (bulge)
- Low α-MSH, TGFβ1/2, IGF-1
- Low VIP-R
- Low cortisol
- Proinflammatory mast cells
- Insufficient Treg activity?

Inducers → IFNγ, subst P

Harries et al. *J Pathol 2013 & TMM 2018*

LPP = bulge IP collapse

SCARRING

Paus et al *Yale J Biol Med 1993*

AA = bulb IP collapse

REVERSIBLE

"Immunological watershed"
AA = HF cycling disorder

Perifollicular inflammatory infiltrate

1. Attack only anagen hair bulb (anagen III-VI)

2. Catapult anagen HFs prematurely into catagen

3. MHC class I-based HF IP collapses, CD8+ T & other NKG2D+ cells attack anagen hair matrix

→ Key role of IFNγ
AA = HF cycling disorder

Perifollicular inflammatory infiltrate

1. Attack only anagen hair bulb (anagen III-VI)

2. Catapult anagen HF's prematurely into catagen

3. MHC class I-based
 HF IP collapses,
 CD8+ T & other NKG2D+ cells
 attack anagen hair matrix
 → Key role of IFN\(\gamma\)

→ JAK inhibitors
 e.g. ruxolitinib, tofacitinib etc.
 Antagonize IFN\(\gamma\); may suppress catagen
No AA without
1) HF IP collapse
2) Perifollicular inflammatory cell infiltrate
3) Premature catagen induction in anagen HFs
4) HF dystrophy

AA is an autoimmune-response against melanogenesis-related autoantigens, exposed by abnormal MHC class I expression in an anagen hair bulb with collapsed HF IP

Experimental confirmation:

→ Alli et al. J Immunol 2012 (mouse AA)
“Swarm of bees” infiltrate

How does it get there?

NKG2D+ Cells:
CD8+ TC
NK & gdTCs

Permanent alopecia

Reversible alopecia

Mast cells

Ito et al. JID 2008
Bertolini et al. PLoS ONE 2014
"Swarm of bees" infiltrate

How does it get there?

1. **CD8+ TCs:**
 - MHC class I-presented (auto-)antigens
 - *Melanogenesis!*

2. **MICA**
 - "stress/danger" signal

What do they recognize?

- CD4+
- CD8+ TC
- NKG2D+ cells (NK & γδTCs)

Permanent alopecia

Reversible alopecia

Not for Distribution
Excessive MICA

"stress/danger“ signal expression

What attracts them?

"Swarm of bees" infiltrate

CD8+ T
NKG2D+ cells
(NK & \(\gamma\delta\)TCs)
CD4 TCs follow

Chemo-
kines
CXCL10

Permanent alopecia

Reversible alopecia

Excessive MICA

"stress/danger“ signal expression

What attracts them?

"Swarm of bees" infiltrate
Bulb IP continuously threatened:

1. **HF „tissue stress“**
 e.g. trauma, hypoxia, excessive ROS production
 Excessive MICA expr & chemokine release
 → Activates NK & gdTCs
 → IFNg release → further IP collapse

2. **Psychoemotional stress**
 → Perifollicular neurogenic inflammation
 SP, mast cells, NGF, CRH
 → SP induces IP collapse ! Peters et al. *AJP* 2007

3. **HF dysbiosis ?**
 → Excessive chemokine release
 → Attracts IFNg-secreting infiltrate (CD8+, gdTCs !)

4. **Ectopic expression of HF autoantigens**
 e.g. melanogenesis- & hair shaft-associated
 → Stimulation of pre-existing autoreactive CD8+TCs

5. **Loss of peripheral tolerance / weak HF IP**
 e.g. insufficient Treg activity & HF IP guardian production
1. HF "tissue stress"
2. Psychoemotional stress
3. HF dysbiosis
4. Ectopic HF autoantigen expression
5. Loss of peripheral tolerance

- Acquired & inherited **interindividual differences in IP robustness**, e.g.
 - Constitutive levels of MHC I, HF guardian & VIP-R expression; levels of Treg activity;
 - atopy (proinflamm. MCs, eos), AIRE defective
 - accelerate or slow down IP collapse
AA variants

Focal/multifocal AA

AA totalis

AA universalis

AA incognita/diffuse variant

„overnight graying“

= diffuse AA
attacking only pigmented HFs,
demasking pre-existent white hair

AA clinical trials should be standardized to homogeneous AA populations, also in terms of prognosis
Biomarkers?

AA subtype?

Disease activity?

Guidance for optimal personalized therapy?

Prognosis?
Prognosis

„Rules of thumb clinical biomarkers“

Poor

• First AA attack *before* puberty
• Rapid progression to AT or AU
• Atopy + (especially AD !)
• Ophiasis
• Associated autoimmune diseases
• Down syndrome

Not so good

• Positive family history for AA
• Nail pitting
• Multiple affected sites

Good

• 1st episode & none of the above
Prognosis: „Rules of thumb“

Poor
- First AA attack *before* puberty
- Rapid progression to AT or AU
- Atopy + (especially AD !)
- Ophiasis
- Associated autoimmune diseases
- Down syndrome

Not so good
- Positive family history for AA
- Nail pitting
- Multiple affected sites

Good
- 1st episode & none of the above

JAK inhibitors?
- Adjust aggressiveness of therapeutic approach
 - „Pragmatic Personalized Medicine“
 - Topical clobetasol
 - Triamcinolone injection
Best "biomarkers" for AA subtype, Disease activity
guidance for optimal personalized therapy & prognosis
are still:

→ Personal & family history
 → Age, Atopy
 → Associated diseases
 → Clinical signs

→ Presentation at onset, speed of progression

IFNg; Number & activation status of NKG2D+ cells in peripheral blood?
Pertinent pathogenesis questions

• Is AA really always (auto-)antigen-specific?

• Do we always face a CD8+ T cell-dependent autoimmune disease when we see an AA hair loss phenotype?

• Is a specific genetic predisposition required to develop AA?
• AA: always (auto-)antigen-specific?
 No

• Is AA always CD8+ T cell-dependent?
 No

• Is a genetic predisposition required to develop AA lesions?
 No

2 main lines of evidence ➔ NK cells, γδTCs
Why is there no NK cell attack on MHC class Ia-negative normal anagen HFs?

Ito T et al *J Invest Dermatol* 2008
• **MICA expression**
 (=NK cell stimulating NKG2D ligand)
 is **low** in normal anagen HF
 (except proximal anagen hair matrix ?)

• **massively up-regulated**
 in AA lesions!

• **MIF & KIR** (=inhibit NK functions)
 High in normal, **low in AA**

• **NKG2D expression** on peripheral blood NK cells **increased** in AA

→ **NKG2D+** cell activity is kept „low key“ around healthy HFs

→ **Non-antigen specific** NK cells, NKG2D
 & its ligands important in AA pathobiology

Constitutive „Achilles‘ heal“ of HF ?

Ito T et al, *JID* 2008
AA strongly associated with **NKG2D activating ligands MICA, ULPB3**

Sinclair Lab *JID* 2016:
MICA, but not ULPB3 overexpressed in lesional AA HFs

ULBP3 and NKG2D expression and immune cell infiltration of AA hair follicles
NKG2D+ cells induce AA in healthy human skin in vivo

Not for Distribution

→ Specific autoantigen & genetic predisposition DISPENSABLE for developing AA!
Vδ1+T-cells infiltrate in /around AA hair bulbs

... also seen in experimentally induced AA in human skin xenotransplants *in vivo*

(Gilhar's humanized AA mouse model)

→ Do **Vδ1**+T cells operate as stress sentinels around human HFs?

+ increased NKG2D & IFNγ expression!

Youhei Uchida et al *In prep.*

<table>
<thead>
<tr>
<th>Number of Vδ1+T-cells in & around HF</th>
<th>HS</th>
<th>NL</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS</td>
<td>5</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>NL</td>
<td>20</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>AA</td>
<td>30</td>
<td>35</td>
<td>40</td>
</tr>
</tbody>
</table>

HS = healthy skin

NL = non-lesional AA skin

AA = lesional AA skin
Several different pathobiology pathways lead to AA, which all coalesce in a stereotypic HF damage response pattern to IFN-γ- or SP-driven immunological damage. This creates the clinical AA phenotype. This response pattern also occurs in healthy HFs.
• AA is not a single disease entity, but just a stereotypic response pattern to inflammatory HF damage

• that even the healthiest of HFs will show,

• irrespective of genetic predisposition (but more easily so, if genetically predisposed, e.g. by constitutively weak IP or constitutive overexpression of „danger“ signals [MICA])

\textbf{if and only if}

• HF IP collapse \textit{coincides} with anagen and attracts an inflammatory cell infiltrate (not necessarily only CD8+ T cells but also NK cells [Ito et al. \textit{JID} 2008], \(\gamma\delta\)TCs [Uchida et al., \textit{under prep.}])

• that secretes so much IFN\(\gamma\) that major HF dystrophy & premature catagen are induced
Alopecia areata is not one disease

→ Ikeda 1965

and some forms of AA may not even be a „disease“ at all!

Paus et al. *JID Symp Proc* 2018
HYPOTHESIS

→ Only in some AA patients, this response pattern occurs because they have autoreactive, IFNγ-secreting CD8+ T cells that recognize an anagen HF-associated autoantigen = „AA disease“

→ Autoimmune alopecia areata (AAA)

→ Frequently relapsing episodes, associated AID: AAA?

→ Ikeda AA Type IV, 1965

→ In these patients, causal & curative therapy only possible if autoantigen identified, peripheral tolerance restored and/or autoreactive T cells eliminated
HYPOTHESIS

In other AA patients (majority?)
 Ikeda Type 1?

antigen-specific HF autoimmunity may be missing
 e.g.

 A: „IFNγ storm“: massive IFNγ release by NK and/or γδ T cells
 → AA after trauma/stress, infection, HF dysbiosis ??

 B: stress-induced, substance P-dependent neurogenic inflammation

 → Symptomatic therapy suffices here!

„You are treating a mere HF response pattern, not a disease“
Both AA forms display the "AA pathobiology quartet": perifollicular infiltrate, HF IP collapse, HF dystophy, premature catagen

\[\text{Targeting the AA trio therapeutically always makes sense no matter how the AA response pattern was triggered!}\]

\[\text{restore IP + inhibit catagen + repair HF damage}\]

We must get much more effective in this! What else, besides JAK inhibitors...?

\[\text{Re-explore known immune privilege guardians}\]

\begin{itemize}
 \item e.g. FK506, apremilast (PDE4 inh.), aprepitant (SP antagonists),
 \item melanotan & other stable aMSH, VIP receptor agonists
\end{itemize}
Take home messages

- **AA** = “a stereotypic HF response pattern” to mainly IFN-γ-driven immunological HF damage, not necessarily a disease

- **Distinguish antigen-specific autoimmune AA (AAA) from non-antigen-specific AA**
 - causal therapy only needed, possible & useful for AAA
 - symptomatic therapy suffices for all other AA variants

- **Personalized medicine approach to AA management needed**

- **However:** Protection from IP collapse & HF dystrophy works & is useful in all AA forms

- **Biomarkers:** Stick with prognosis classics, for now