Biomarkers are potential instruments in the toolbox of precision medicine in AD.

Precision medicine approaches may improve AD management because therapeutic response may vary based on heterogeneous clinical and molecular phenotypes.

BIOMARKER DEFINITIONS

A biological molecule found in blood, other body fluids, or tissues that can be used to follow body processes and diseases in humans and animals.

A defined characteristic that is measured as an indicator of normal biologic processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions.

DEMANDING PROCESS OF BIOMARKER DEVELOPMENT AND VALIDATION

BIOMARKER DISCOVERY

By chance or hypothesis-driven discovery using patient registries

INTERNAL VALIDATION

In a limited number of clinical cases

EXTERNAL VALIDATION

In a large cohort of patients

REGULATORY QUALIFICATION

Complex process supported by regulatory agency guidance

USES OF POTENTIAL BIOMARKERS IDENTIFIED IN AD

IMPROVE DIAGNOSIS

Eg: differentiate AD and psoriasis

REFLECT DISEASE SEVERITY

Eg: monitor treatment efficacy and motivate patient adherence

PREDICT ONSET

Eg: intervene early in high-risk neonates

PREDICT RESPONSE

Eg: disease-response and treatment-specific biomarkers guide treatment

POTENTIAL BIOMARKERS FOR AD IN NONLESIONAL AND LESIONAL AD SKIN AND BLOOD

AD BIOMARKERS ACROSS DISEASE PHENOTYPES

T_n^2 and T_{n2} pathways commonly activated across AD subtypes, but specific biomarkers vary among different populations.

DIFFERENT ETHNICITIES

Eg: Asian biomarkers correlate with clinical phenotype: psoriasiform type lesions

AD COMORBIDITIES

Eg: biomarkers may reflect AD clinical severity and predict food allergy

AGE-RELATED CHANGES

Eg: elderly biomarkers reflect barrier defect; infant biomarkers similar to psoriasis

S. aureus COLONIZATION

Higher levels of type 2 biomarkers and more severe clinical parameters

SAMPLES/TECHNIQUES FOR STUDYING AD BIOMARKERS

- **Blood**
 - Relatively easy collection
 - May more objectively represent overall skin involvement
 - Changes may be subtle and/or take longer to occur
 - Some key biomarkers in skin not well detected (ie, CCL26/5/3/5/3)

- **Skin biopsy**
 - High detection rates
 - Locate barrier-related changes at specific areas
 - Immunohistochemistry studies reveal structural changes
 - Painful and scarring
 - Potential infections and poor healing

- **Tape strip**
 - Minimally invasive and nonscarring
 - Variable detection rate (50-100%) across studies
 - Capture barrier-related changes in early disease
 - Tissue processing is time-consuming/technically challenging
 - Cannot capture differences in skin depth, location of biomarkers, and structural changes

CONCLUSIONS

The potential of biomarkers in AD is yet to be fully elucidated. The review found that the chemokine with the greatest evidence-based support to become a potential AD biomarker, at both baseline and following therapy, is CCL17/TARC, a chemoattractant of TH2 cells. Studies using more minimally invasive techniques, such as tape-strips, in which biomarker dynamics are closely monitored in relation to therapeutic response are needed to improve the validity and relevance of biomarkers in AD.

Abbreviations: AD=atopic dermatitis, CCL=chemokine C, FDA=Food and Drug Administration, EMA-European Medicines Agency, EMA-EMA, IEC-biologic processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions.